Solutions to Problems 5: C^{1}-functions and more
C^{1}-scalar-valued functions

1. Define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f(\mathbf{x})=x \sin (x y z)+\exp (y z)$ where $\mathbf{x}=(x, y, z)^{T}$. Prove that f is a Fréchet differentiable function by showing that f is C^{1} on \mathbb{R}^{3}.

Solution The partial derivatives of f are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(\mathbf{x})=\sin (x y z)+x y z \cos (x y z) \\
& \frac{\partial f}{\partial y}(\mathbf{x})=x^{2} z \cos (x y z)+z \exp (y z) \\
& \frac{\partial f}{\partial z}(\mathbf{x})=x^{2} y \cos (x y z)+y \exp (y z)
\end{aligned}
$$

The $x y z, x^{2} z$, etc. terms are polynomials in the variables of \mathbf{x} and so are continuous. The sin, cos, exp are functions from \mathbb{R} to \mathbb{R}, known to be continuous from previous analysis courses. Hence, by the Composite Rule along with the Product and Sum Rules for continuous functions, the partial derivatives above are continuous on \mathbb{R}^{3}. Hence f is C^{1} on \mathbb{R}^{3} and thus Fréchet differentiable on \mathbb{R}^{3}.
2. Define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f(\mathbf{x})=\sin \left(x y^{2} z^{3}\right)$ where $\mathbf{x}=(x, y, z)^{T}$.
i. Prove that f is Fréchet differentiable at $\mathbf{a}=(\pi, 1,-1)^{T}$.
ii. Find the directional derivative $d_{\mathbf{v}} f(\mathbf{a})$ where $\mathbf{v}=(2 / 3,1 / 3,-2 / 3)^{T}$.

Solution i. For a general $\mathbf{x} \in \mathbb{R}^{3}$ the gradient vector is

$$
\nabla f(\mathbf{x})=\left(\begin{array}{c}
y^{2} z^{3} \cos \left(x y^{2} z^{3}\right) \\
2 x y z^{3} \cos \left(x y^{2} z^{3}\right) \\
3 x y^{2} z^{2} \cos \left(x y^{2} z^{3}\right)
\end{array}\right)
$$

The components are continuous on \mathbb{R}^{3} hence f is a C^{1}-function and thus Fréchet differentiable on \mathbb{R}^{3} and hence at the given a.
ii. It is important to make the observation that f is Fréchet differentiable because only if you know f is Fréchet differentiable at a can you say

$$
\begin{aligned}
d_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \bullet \mathbf{v} & =\frac{1}{3}\left(\begin{array}{c}
-\cos (-\pi) \\
-2 \pi \cos (-\pi) \\
3 \pi \cos (-\pi)
\end{array}\right) \bullet\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{r}
1 \\
2 \pi \\
-3 \pi
\end{array}\right) \bullet\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right) \\
& =\frac{2+8 \pi}{3} .
\end{aligned}
$$

The following was Questions 182 on Sheet 4 but now, with C^{1}-functions, we can give a quicker solution.
3. a. By using partial differentiation find the gradient vectors of
i. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \longmapsto x(x+y)$ and
ii. $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \longmapsto y(x-y)$
and show they are everywhere Fréchet differentiable. Find the directional derivatives of f and g at $\mathbf{a}=(1,2)^{T}$ in the direction $\mathbf{v}=(2,-1)^{T} / \sqrt{5}$, justifying your method.
b. Using partial differentiation find the gradient vector of $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $\mathbf{x} \longmapsto x y+y z+x z$ where $\mathbf{x}=(x, y, z)^{T}$, and show it is everywhere Fréchet differentiable. Find the directional derivative of f at $\mathbf{a}=(1,2,3)^{T}$ in the direction $\mathbf{v}=(3,2,1)^{T} / \sqrt{14}$, justifying your method.
Solution a. i. $\nabla f(\mathbf{x})=(2 x+y, x)^{T}$, ii. $\nabla g(\mathbf{x})=(y, x-2 y)^{T}$
All the terms of both gradient vectors are polynomials which are everywhere continuous hence both f and g are C^{1}-functions and thus everywhere Fréchet differentiable.

Since f and g are Fréchet differentiable we have

$$
\begin{aligned}
& d_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \bullet \mathbf{v}=\frac{1}{\sqrt{5}}\binom{4}{1} \bullet\binom{2}{-1}=\frac{7}{\sqrt{5}} \\
& d_{\mathbf{v}} g(\mathbf{a})=\nabla g(\mathbf{a}) \bullet \mathbf{v}=\frac{1}{\sqrt{5}}\binom{2}{-3} \bullet\binom{2}{-1}=\frac{7}{\sqrt{5}}
\end{aligned}
$$

Hopefully they agree with your answers to Question 1 on Sheet 3.
b. $\nabla h(\mathbf{x})=(y+z, x+z, x+y)^{T}$. All the terms of the gradient vector are polynomials which are everywhere continuous hence h is a C^{1}-function and thus everywhere Fréchet differentiable. Therefore we are allowed to say

$$
d_{\mathbf{v}} h(\mathbf{a})=\nabla h(\mathbf{a}) \cdot \mathbf{v}=\frac{1}{\sqrt{14}}\left(\begin{array}{l}
5 \\
4 \\
3
\end{array}\right) \bullet\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=\frac{26}{\sqrt{14}} .
$$

Hopefully this agrees with your answer to Question 3 on Sheet 3 .
4. (Tricky) Recall:

$$
f \text { is } C^{1} \text { at } \mathbf{a} \Longrightarrow f \text { is Fréchet differentiable at } \mathbf{a} \Longrightarrow f \text { continuous at } \mathbf{a} \text {. }
$$

The contrapositive of this is
f not conts at $\mathbf{a} \Longrightarrow f$ not F-differentiable at $\mathbf{a} \Longrightarrow f$ is not C^{1}.
Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{x})=\frac{x y}{x^{2}+y^{2}} \quad \text { if } \quad \mathbf{x} \neq \mathbf{0} ; \quad \text { with } f(\mathbf{0})=0 .
$$

This was shown in Question 11ii on Sheet 1 to not be continuous at 0. So, as not to contradict (1), prove that f is not C^{1} at $\mathbf{0}$, i.e. that the partial derivatives are not continuous at $\mathbf{0}$.

Solution Partial differentiation gives

$$
\begin{equation*}
\frac{\partial f}{\partial x}(\mathbf{x})=\frac{y\left(y^{2}-x^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \tag{2}
\end{equation*}
$$

for $\mathbf{x} \neq \mathbf{0}$. Going back to the definition gives

$$
\frac{\partial f}{\partial x}(\mathbf{0})=\lim _{t \rightarrow 0} \frac{f\left(\mathbf{0}+t \mathbf{e}_{1}\right)-f(\mathbf{0})}{t}=\lim _{t \rightarrow 0} \frac{1}{t} \frac{t \times 0}{t^{2}+0^{2}}=0 .
$$

To be C^{1} at $\mathbf{0}$ means that $\partial f(\mathbf{x}) / \partial x$ is continuous at $\mathbf{0}$. Look at the limit of $\partial f(\mathbf{x}) / \partial x$ as $\mathbf{x} \rightarrow \mathbf{0}$ along the y-axis, i.e. $\mathbf{x}=t \mathbf{e}_{2}$ as $t \rightarrow 0$. For then, by (2),

$$
\frac{\partial f}{\partial x}\left(t \mathbf{e}_{2}\right)=\frac{t^{3}}{t^{4}}=\frac{1}{t}
$$

which has no limit as $t \rightarrow 0$ and certainly doesn't equal $0=\partial f(\mathbf{0}) / \partial x$. Hence the partial derivative w.r.t. x is not continuous.

The argument for the partial derivative w.r.t. y is identical but this is not needed; as soon as one partial derivative is not continuous we can deduce that f is not C^{1}.

C^{1}-vector-valued functions

5. Find the Jacobian matrices of the following functions, show that the functions are everywhere Fréchet differentiable and then find the directional derivatives at the given point \mathbf{a} in the direction \mathbf{v}. In this way check your answers to Questions $5 \& 7$ on Sheet 3 .
i. $\quad \mathbf{f}\left((x, y, z)^{T}\right)=(x y, y z)^{T}, \mathbf{a}=(1,3,-2)^{T}$ and $\mathbf{v}=(-1,1,-2)^{T} / \sqrt{6}$,
ii. $\quad \mathbf{f}\left((x, y)^{T}\right)=\left(x y^{2}, x^{2} y\right)^{T}, \mathbf{a}=(2,1)$ and $\mathbf{v}=(1,-1)^{T} / \sqrt{2}$.

Solution i. The Jacobian matrix is

$$
J \mathbf{f}(\mathbf{a})=\left(\begin{array}{lll}
y & x & 0 \\
0 & z & y
\end{array}\right)_{\mathbf{x}=\mathbf{a}}=\left(\begin{array}{rrr}
3 & 1 & 0 \\
0 & -2 & 3
\end{array}\right) .
$$

All the terms in $J \mathbf{f}(\mathbf{x})$ are polynomials and thus continuous on \mathbb{R}^{3} and thus \mathbf{f} is a C^{1}-function and hence everywhere Fréchet differentiable. Since, for a Fréchet differentiable function, $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=J \mathbf{f}(\mathbf{a}) \mathbf{v}$ we have

$$
d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=\frac{1}{\sqrt{6}}\left(\begin{array}{rrr}
3 & 1 & 0 \\
0 & -2 & 3
\end{array}\right)\left(\begin{array}{r}
-1 \\
1 \\
-2
\end{array}\right)=\frac{1}{\sqrt{6}}\binom{-2}{-8}=-\sqrt{\frac{2}{3}}\binom{1}{4} .
$$

This agrees with Question 5 on Sheet 3.
ii. The Jacobian matrix is

$$
J \mathbf{f}(\mathbf{a})=\left(\begin{array}{rr}
y^{2} & 2 x y \\
2 x y & x^{2}
\end{array}\right)_{\mathbf{x}=\mathbf{a}}=\left(\begin{array}{ll}
1 & 4 \\
4 & 4
\end{array}\right) .
$$

All the terms in $J \mathbf{f}(\mathbf{x})$ are polynomials and thus continuous on \mathbb{R}^{2} and thus \mathbf{f} is a C^{1}-function and hence everywhere Fréchet differentiable. Since, for a Fréchet differentiable function, $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=J \mathbf{f}(\mathbf{a}) \mathbf{v}$ we have

$$
d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 4 \\
4 & 4
\end{array}\right)\binom{1}{-1}=\frac{1}{\sqrt{2}}\binom{-3}{0}=-\frac{3}{\sqrt{2}}\binom{1}{0} .
$$

This agrees with Question 7 on Sheet 3.

Chain Rule

6. Let

$$
\mathbf{f}(\mathbf{x})=\binom{x^{2} y}{x y^{2}} \quad \text { and } \quad \mathbf{g}(\mathbf{u})=\binom{u+v}{u-v}
$$

for $\mathbf{x}=(x, y)^{T}$ and $\mathbf{u}=(u, v)^{T}$.
i. Calculate $\mathbf{f}(\mathbf{g}(\mathbf{u}))$ and thus find the Jacobian matrix $J(\mathbf{f} \circ \mathbf{g})(\mathbf{a})$ where $\mathbf{a}=(1,-2)^{T}$.
ii. Alternatively find $J \mathbf{f}(\mathbf{b})$, with $\mathbf{b}=\mathbf{g}(\mathbf{a})$, and $J \mathbf{g}(\mathbf{a})$ and use the Chain Rule to calculate $J(\mathbf{f} \circ \mathbf{g})(\mathbf{a})$

Solution i The composition function $\mathbf{f} \circ \mathbf{g}$ is

$$
\mathbf{f}(\mathbf{g}(\mathbf{u}))=\binom{(u+v)^{2}(u-v)}{(u+v)(u-v)^{2}}=\binom{u^{3}+u^{2} v-u v^{2}-v^{3}}{u^{3}-u^{2} v-u v^{2}+v^{3}}
$$

Thus

$$
\begin{aligned}
J(\mathbf{f} \circ \mathbf{g})(\mathbf{a}) & =\left(\begin{array}{rc}
3 u^{2}+2 u v-v^{2} & u^{2}-2 u v-3 v^{2} \\
3 u^{2}-2 u v-v^{2} & -u^{2}-2 u v+3 v^{2}
\end{array}\right)_{\mathbf{u}=\mathbf{a}} \\
& =\left(\begin{array}{rr}
-5 & -7 \\
3 & 15
\end{array}\right)
\end{aligned}
$$

ii First calculate $\mathbf{b}=\mathbf{g}\left((1,-2)^{T}\right)=(-1,3)^{T}$. Then

$$
J \mathbf{f}(\mathbf{b})=\left(\begin{array}{cc}
2 x y & x^{2} \\
y^{2} & 2 x y
\end{array}\right)_{\mathbf{x}=\mathbf{b}}=\left(\begin{array}{rr}
-6 & 1 \\
9 & -6
\end{array}\right) .
$$

Also

$$
J \mathbf{g}(\mathbf{u})=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

for all \mathbf{u}, and in particular $\mathbf{u}=\mathbf{a}$.
The Chain Rules states, in terms of Jacobian matrices, that $J(\mathbf{f} \circ \mathbf{g})(\mathbf{a})=$ $\mathbf{f}(\mathbf{g}(\mathbf{a})) J \mathbf{g}(\mathbf{a})$. Here

$$
J \mathbf{f}(\mathbf{g}(\mathbf{a})) J \mathbf{g}(\mathbf{a})=\left(\begin{array}{rr}
-6 & 1 \\
9 & -6
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{rr}
-5 & -7 \\
3 & 15
\end{array}\right) .
$$

The same answer as in part i.!
7. Use the Chain Rule to find the Fréchet derivative of $\mathbf{f} \circ \mathbf{g}$ at the given point a for each of the following.
i. i. With $\mathbf{x}=(x, y)^{T}, \mathbf{u}=(u, v)^{T} \in \mathbb{R}^{2}$,

$$
\mathbf{f}(\mathbf{x})=\binom{x^{2} y}{x-y} \quad \text { and } \quad \mathbf{g}(\mathbf{u})=\binom{3 u v}{u^{2}-v}
$$

at $\mathbf{a}=(2,1)^{T}$.
ii. ii. With $\mathbf{x}=(x, y, z)^{T} \in \mathbb{R}^{3}, \mathbf{u}=(u, v)^{T} \in \mathbb{R}^{2}$,

$$
\mathbf{f}(\mathbf{x})=\binom{x y}{y z} \quad \text { and } \quad \mathbf{g}(\mathbf{u})=\left(\begin{array}{c}
u v^{2}-v \\
u^{2} \\
1 / u v
\end{array}\right)
$$

$$
\text { at } \mathbf{a}=(2,1)^{T} .
$$

Solution The \mathbf{g} in part ii is not Fréchet differentiable at $\mathbf{0}$, but otherwise all functions are differentiable at all points in which we are interested. Thus, by the Composition Rule, $\mathbf{f} \circ \mathbf{g}$ is differentiable. Therefore $d(\mathbf{f} \circ \mathbf{g})_{\mathbf{a}}(\mathbf{t})=$ $J(\mathbf{f} \circ \mathbf{g})(\mathbf{a})(\mathbf{t})$ for all $\mathbf{t} \in \mathbb{R}^{2}$. The Chain Rule for matrices states that $J(\mathbf{f} \circ \mathbf{g})(\mathbf{a})=J \mathbf{f}(\mathbf{b}) J \mathbf{g}(\mathbf{a})$ where $\mathbf{b}=\mathbf{g}(\mathbf{a})$ and it is this product we will calculate.
i. First, $\mathbf{b}=\mathbf{g}(\mathbf{a})=(6,3)^{T}$. Then

$$
J \mathbf{g}(\mathbf{a})=\left(\begin{array}{ll}
3 v & 3 u \\
2 u & -1
\end{array}\right)_{\mathbf{u}=\mathbf{a}}=\left(\begin{array}{rr}
3 & 6 \\
4 & -1
\end{array}\right)
$$

And

$$
J \mathbf{f}(\mathbf{b})=\left(\begin{array}{cc}
2 x y & x^{2} \\
1 & -1
\end{array}\right)_{\mathbf{x}=\mathbf{b}}=\left(\begin{array}{rr}
36 & 36 \\
1 & -1
\end{array}\right) .
$$

Thus

$$
(\mathbf{f} \circ \mathbf{g})(\mathbf{a})=\left(\begin{array}{rr}
36 & 36 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
3 & 6 \\
4 & -1
\end{array}\right)=\left(\begin{array}{cc}
252 & 180 \\
-1 & 7
\end{array}\right) .
$$

The question asked you to find the Fréchet derivative which is, with $\mathbf{t}=$ $(s, t)^{T} \in \mathbb{R}^{2}$,

$$
d(\mathbf{f} \circ \mathbf{g})_{\mathbf{a}}(\mathbf{t})=\left(\begin{array}{rr}
252 & 180 \\
-1 & 7
\end{array}\right)\binom{s}{t}=\binom{252 s+180 t}{-s+7 t}
$$

ii. First, $\mathbf{b}=\mathbf{g}(\mathbf{a})=(1,4,1 / 2)^{T}$. Then

$$
J \mathbf{g}(\mathbf{a})=\left(\begin{array}{cc}
v^{2} & 2 u v-1 \\
2 u & 0 \\
-1 / u^{2} v & -1 / u v^{2}
\end{array}\right)_{\mathbf{u}=\mathbf{a}}=\left(\begin{array}{cc}
1 & 3 \\
4 & 0 \\
-1 / 4 & -1 / 2
\end{array}\right)
$$

And

$$
J \mathbf{f}(\mathbf{x})=\left(\begin{array}{ccc}
y & x & 0 \\
0 & z & y
\end{array}\right)_{\mathbf{x}=\mathbf{b}}=\left(\begin{array}{ccc}
4 & 1 & 0 \\
0 & 1 / 2 & 4
\end{array}\right) .
$$

Thus

$$
(\mathbf{f} \circ \mathbf{g})(\mathbf{a})=\left(\begin{array}{ccc}
4 & 1 & 0 \\
0 & 1 / 2 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & 3 \\
4 & 0 \\
-1 / 4 & -1 / 2
\end{array}\right)=\left(\begin{array}{cc}
8 & 12 \\
1 & -2
\end{array}\right) .
$$

The question asked you to find the Fréchet derivative which is, with $\mathbf{t}=$ $(s, t)^{T} \in \mathbb{R}^{2}$,

$$
d(\mathbf{f} \circ \mathbf{g})_{\mathbf{a}}(\mathbf{t})=\left(\begin{array}{cc}
8 & 12 \\
1 & -2
\end{array}\right)\binom{s}{t}=\binom{8 s+12 t}{s-2 t}
$$

8. Consider the Chain Rule in the case

$$
\mathbb{R}^{p} \xrightarrow{\mathrm{~g}} \mathbb{R}^{n} \xrightarrow{f} \mathbb{R},
$$

so f is scalar-valued. Assume \mathbf{g} is Fréchet differentiable at $\mathbf{a} \in \mathbb{R}^{p}$ and f is Fréchet differentiable at $\mathbf{b}=\mathbf{g}(\mathbf{a}) \in \mathbb{R}^{m}$. The Chain Rule says that $f \circ \mathbf{g}$ is Fréchet differentiable at \mathbf{a} and $J(f \circ \mathbf{g})(\mathbf{a})=J f(\mathbf{b}) J \mathbf{g}(\mathbf{a})$.

Think of the coordinates in \mathbb{R}^{p} as x^{i} for $1 \leq i \leq p$, while in \mathbb{R}^{n} they will be y^{j} for $1 \leq j \leq n$. Show that the Chain Rule can be written as

$$
\frac{\partial f \circ \mathbf{g}}{\partial x^{i}}(\mathbf{a})=\sum_{k=1}^{n} \frac{\partial f}{\partial y^{k}}(\mathbf{b}) \frac{\partial g^{k}}{\partial x^{i}}(\mathbf{a}),
$$

for $1 \leq i \leq p$.
Solution Since f and $f \circ g$ are scalar-valued functions their Jacobian matrices consist of only one row. In particular

$$
J f(\mathbf{b})=\left(d_{1} f(\mathbf{b}), \ldots, d_{n} f(\mathbf{b})\right)=\left(\frac{\partial f}{\partial y^{1}}(\mathbf{b}), \ldots, \frac{\partial f}{\partial y^{n}}(\mathbf{b})\right)
$$

Similarly

$$
\begin{aligned}
J(f \circ \mathbf{g})(\mathbf{a}) & =\left(d_{1}(f \circ \mathbf{g})(\mathbf{a}), \ldots, d_{p}(f \circ \mathbf{g})(\mathbf{a})\right) \\
& =\left(\frac{\partial(f \circ \mathbf{g})}{\partial x^{1}}(\mathbf{a}), \ldots, \frac{\partial(f \circ \mathbf{g})}{\partial x^{p}}(\mathbf{a})\right) .
\end{aligned}
$$

From the definition of matrix multiplication the Chain Rule $J(f \circ \mathbf{g})(\mathbf{a})=$ $J f(\mathbf{b}) J \mathbf{g}(\mathbf{a})$ can be reinterpreted as saying that $d_{i}(f \circ \mathbf{g})(\mathbf{a})$, the i-th coordinate of $J(f \circ \mathbf{g})(\mathbf{a})$, equals the matrix product of $J f(\mathbf{b})$ with the i-th column of $J \mathbf{g}(\mathbf{a})$, which is $d_{i} \mathbf{g}(\mathbf{a})$. This can be written in a number of ways.

First, for $1 \leq i \leq p$,

$$
d_{i}(f \circ \mathbf{g})(\mathbf{a})=J f(\mathbf{b}) d_{i} \mathbf{g}(\mathbf{a})=\sum_{k=1}^{n} d_{k} f(\mathbf{b})\left(d_{i} \mathbf{g}(\mathbf{a})\right)^{k}=\sum_{k=1}^{n} d_{k} f(\mathbf{b}) d_{i} g^{k}(\mathbf{a}) .
$$

Or, with the alternative way of writing the partial derivatives,

$$
\frac{\partial f \circ \mathbf{g}}{\partial x^{i}}(\mathbf{a})=\sum_{k=1}^{n} \frac{\partial f}{\partial y^{k}}(\mathbf{b}) \frac{\partial g^{k}}{\partial x^{i}}(\mathbf{a})
$$

Extremal values of $d_{\mathbf{v}} f(\mathbf{a})$.
Here we find $\max _{\mathbf{v}:|\mathbf{v}|=1} d_{\mathbf{v}} f(\mathbf{a})$ and $\min _{\mathbf{v}:|\mathbf{v}|=1} d_{\mathbf{v}} f(\mathbf{a})$, that is the directions of maximum and mimimum rate of change of f as we move away from \mathbf{a}.
9. Suppose that $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Fréchet differentiable on U and $\mathbf{a} \in U$. Prove that the directional derivative $d_{\mathbf{v}} f(\mathbf{a})$ has a
i. maximum value of $|\nabla f(\mathbf{a})|$ when \mathbf{v} is in the direction of $\nabla f(\mathbf{a})$ and
ii. a minimum value of $-|\nabla f(\mathbf{a})|$ when \mathbf{v} is in the direction of $-\nabla f(\mathbf{a})$.

Hint for any vectors we have $\mathbf{a} \bullet \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$ where θ is the angle between the vectors \mathbf{a} and \mathbf{b}.

Solution Since f is Fréchet differentiable on U and $\mathbf{a} \in U$ we have from the notes that for a unit vector $\mathbf{v}, d_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \bullet \mathbf{v}$. Thus, by the hint in the question,

$$
d_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \bullet \mathbf{v}=|\nabla f(\mathbf{a})||\mathbf{v}| \cos \theta=|\nabla f(\mathbf{a})| \cos \theta,
$$

since $|\mathbf{v}|=1$. Therefore, since $-1 \leq \cos \theta \leq 1$,

$$
\begin{equation*}
-|\nabla f(\mathbf{a})| \leq d_{\mathbf{v}} f(\mathbf{a}) \leq|\nabla f(\mathbf{a})| \tag{3}
\end{equation*}
$$

i. The upper bound is attained when the angle between \mathbf{v} and $\nabla f(\mathbf{a})$ is 0 , i.e. when \mathbf{v} is in the direction of $\nabla f(\mathbf{a})$, which, since \mathbf{v} is a unit vector, is when $\mathbf{v}=\nabla f(\mathbf{a}) /|\nabla f(\mathbf{a})|$. Then, for this value of \mathbf{v},

$$
d_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \bullet \frac{\nabla f(\mathbf{a})}{|\nabla f(\mathbf{a})|}=\frac{|\nabla f(\mathbf{a})|^{2}}{|\nabla f(\mathbf{a})|}=|\nabla f(\mathbf{a})|
$$

ii The lower bound in (3) is attained when the angle between \mathbf{v} and $\nabla f(\mathbf{a})$ is π, i.e. when \mathbf{v} is in the direction of $-\nabla f(\mathbf{a})$, which, since \mathbf{v} is a unit vector, is when $\mathbf{v}=-\nabla f(\mathbf{a}) /|\nabla f(\mathbf{a})|$. Then, for this value of \mathbf{v},

$$
d_{\mathbf{v}} f(\mathbf{a})=-\nabla f(\mathbf{a}) \bullet \frac{\nabla f(\mathbf{a})}{|\nabla f(\mathbf{a})|}=-\frac{|\nabla f(\mathbf{a})|^{2}}{|\nabla f(\mathbf{a})|}=-|\nabla f(\mathbf{a})| .
$$

10. Suppose the temperature at a point $(x, y, z)^{T}$ in a metal cube is given by

$$
T=80-60 x e^{-\frac{1}{20}\left(x^{2}+y^{2}+z^{2}\right)},
$$

where the centre of the cube is taken to be $(0,0,0)^{T}$. In which direction from the origin is the rate of change of temperature greatest? The least?

Solution For simplicity let $r(\mathbf{x})=\left(x^{2}+y^{2}+z^{2}\right) / 20$. The gradient of T is

$$
\nabla T(\mathbf{x})=\left(\begin{array}{c}
-60 e^{-r(\mathbf{x})}+6 x^{2} e^{-r(\mathbf{x})} \\
6 x y e^{-r(\mathbf{x})} \\
6 x z e^{-r(\mathbf{x})}
\end{array}\right) \text { so } \nabla T(\mathbf{0})=\left(\begin{array}{c}
-60 \\
0 \\
0
\end{array}\right)
$$

Hence the greatest rate of change is in the x-axis direction, $(-1,0,0)^{T}$, the least in the $(1,0,0)^{T}$ direction.

Solutions to Additional Questions 5

11 Define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $\mathbf{x} \mapsto x y^{2} z$.
i. Show that f is a C^{1}-function on \mathbb{R}^{3}.
ii. Calculate $\nabla f(\mathbf{a}) \bullet \mathbf{v}$ with $\mathbf{a}=(1,3,-2)^{T}$ and $\mathbf{v}=(-1,1,-2)^{T} / \sqrt{6}$. Explain any similarity with Question 4 Sheet 3.

Solution i. The gradient vector is

$$
\nabla f(\mathbf{x})=\left(\begin{array}{c}
y^{2} z \\
2 x y z \\
x y^{2}
\end{array}\right)
$$

ii.

$$
\nabla f(\mathbf{a}) \bullet \mathbf{v}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}
-18 \\
-12 \\
9
\end{array}\right) \bullet\left(\begin{array}{r}
-1 \\
1 \\
-2
\end{array}\right)=-\frac{12}{\sqrt{6}} .
$$

This is the same as $d_{\mathbf{v}} f(\mathbf{a})$ which you were asked to calculate in Question 4 on Sheet 3 . They are the same because f is, by part i., a C^{1}-function and thus Fréchet differentiable at \mathbf{a}. This is necessary to justify $d_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \bullet \mathbf{v}$.
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(\mathbf{x})=\frac{\sin \left(x^{2} y^{2}\right)}{x^{2}+y^{2}} \quad \text { if } \mathbf{x}=(x, y)^{T} \neq \mathbf{0} ; \quad f(\mathbf{0})=0
$$

i. Find the partial derivatives of f at all points $\mathbf{x} \in \mathbb{R}^{2}$.

Hint For $\mathbf{x}=\mathbf{0}$ you will have to return to the definition of partial derivative.
ii. Prove that f is a C^{1}-function on \mathbb{R}^{2} with Fréchet derivative $d f_{0}=\mathbf{0}$: $\mathbb{R}^{2} \rightarrow \mathbb{R}$ at the origin.
Hint You may make use of $|\sin \theta| \leq|\theta|$ for all θ.
Solution i. Partial differentiation gives

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(\mathbf{x})=\frac{2 x y^{2} \cos \left(x^{2} y^{2}\right)}{x^{2}+y^{2}}-\frac{2 x \sin \left(x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial f}{\partial y}(\mathbf{x})=\frac{2 x^{2} y \cos \left(x^{2} y^{2}\right)}{x^{2}+y^{2}}-\frac{2 y \sin \left(x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

for $\mathbf{x} \neq \mathbf{0}$. For $\mathbf{x}=\mathbf{0}$ we return to the definition of differentiation,

$$
\frac{\partial f}{\partial x}(\mathbf{0})=\lim _{t \rightarrow 0} \frac{f\left(t \mathbf{e}_{1}\right)}{t}=\lim _{t \rightarrow 0} \frac{0}{t^{3}}=0
$$

Similarly

$$
\frac{\partial f}{\partial y}(\mathbf{0})=\lim _{t \rightarrow 0} \frac{f\left(t \mathbf{e}_{2}\right)}{t}=\lim _{t \rightarrow 0} \frac{0}{t^{3}}=0
$$

ii. The partial derivatives given in part i for $\mathbf{x} \neq \mathbf{0}$ are continuous wherever they are defined, i.e. $\mathbf{x} \neq \mathbf{0}$. For $\mathbf{x}=\mathbf{0}$ we have to return to the definition of continuity, that the limit equals the value of the function. Consider

$$
\begin{aligned}
\left|\frac{\partial f}{\partial x}(\mathbf{x})-\frac{\partial f}{\partial x}(\mathbf{0})\right| & =\left|\frac{2 x y^{2} \cos \left(x^{2} y^{2}\right)}{x^{2}+y^{2}}-\frac{2 x \sin \left(x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}-0\right| \\
& \leq \frac{2|x||y|^{2}}{|\mathbf{x}|^{2}}+\frac{2|x|\left|x^{2} y^{2}\right|}{|\mathbf{x}|^{4}}
\end{aligned}
$$

using the triangle inequality along with $|\cos \theta| \leq 1$ and $|\sin \theta| \leq|\theta|$ for all θ. Then recalling that $|x|,|y| \leq|\mathbf{x}|$ we find that

$$
\left|\frac{\partial f}{\partial x}(\mathbf{x})-\frac{\partial f}{\partial x}(\mathbf{0})\right| \leq 4|\mathbf{x}| \rightarrow 0
$$

as $\mathbf{x} \rightarrow 0$. Thus,

$$
\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{\partial f}{\partial x}(\mathbf{x})=\frac{\partial f}{\partial x}(\mathbf{0}),
$$

which is the definition that $\partial f(\mathbf{x}) / \partial x$ is continuous at $\mathbf{x}=\mathbf{0}$. Similarly for $\partial f(\mathbf{x}) / \partial y$. Hence f is a C^{1}-function at $\mathbf{x}=\mathbf{0}$ and thus on all of \mathbb{R}^{2}.

Therefore f is Fréchet differentiable on \mathbb{R}^{2} and in particular at $\mathbf{0}$. This implies that

$$
d f_{\mathbf{0}}(\mathbf{v})=\nabla f(\mathbf{0}) \bullet \mathbf{v}=\binom{\partial f(\mathbf{0}) / \partial x}{\partial f(\mathbf{0}) / \partial y} \bullet \mathbf{v}=\binom{0}{0} \bullet \mathbf{v}=\mathbf{0} .
$$

True for all unit vectors \mathbf{v} means that $d f_{\mathbf{0}}=\mathbf{0}: \mathbb{R}^{3} \rightarrow \mathbb{R}$. (That is, $d f_{\mathbf{0}}$ is the linear map which send all vectors from \mathbb{R}^{3} to 0 in \mathbb{R}.)
13. Further practice on the Chain Rule Use the chain rule to find the derivative of $\mathbf{f} \circ \mathbf{g}$ at the point \mathbf{c} for each of the following. Give your answers in the form $d(\mathbf{f} \circ \mathbf{g})_{\mathbf{c}}(\mathbf{t})$.
i. $\mathbf{f}\left((x, y)^{T}\right)=\left(x^{2} y, x-y\right)^{T}, \mathbf{g}\left((u, v)^{T}\right)=\left(3 u v, u^{2}-4 v\right)^{T}, \quad \mathbf{c}=(1,-2)^{T}$,
ii. $\mathbf{f}\left((x, y, z)^{T}\right)=(4 x y, 3 x z)^{T}, \mathbf{g}\left((u, v)^{T}\right)=\left(u v^{2}-4 v, u^{2}, 4 / u v\right)^{T}, \quad \mathbf{c}=$ $(-2,3)^{T}$
iii. $\mathbf{f}\left((x, y)^{T}\right)=\left(3 x+4 y, 2 x^{2} y, x-y\right)^{T}, \mathbf{g}\left((u, v, w)^{T}\right)=\left(4 u-3 v+w, u v^{2}\right)^{T}$, $\mathbf{c}=(1,-2,3)^{T}$.

Solution The Chain Rule states that $d(\mathbf{f} \circ \mathbf{g})_{\mathbf{c}}=d \mathbf{f}_{\mathbf{g}(\mathbf{c})} \circ d \mathbf{g}_{\mathbf{c}}$, so

$$
d(\mathbf{f} \circ \mathbf{g})_{\mathbf{c}}(\mathbf{t})=d \mathbf{f}_{\mathbf{g}(\mathbf{c})}\left(d \mathbf{g}_{\mathbf{c}}(\mathbf{t})\right) .
$$

i. For $\mathbf{x}=(x, y)^{T}, \mathbf{u}=(u, v)^{T}$ and $\mathbf{t}=(s, t)^{T} \in \mathbb{R}^{2}$ we have

$$
d \mathbf{f}_{\mathbf{x}}(\mathbf{u})=J f(\mathbf{x}) \mathbf{u}=\left(\begin{array}{cc}
2 x y & x^{2} \\
1 & -1
\end{array}\right)\binom{u}{v}
$$

and
$d \mathbf{g}_{\mathbf{c}}(\mathbf{t})=\left(\begin{array}{ll}3 v & 3 u \\ 2 u & -4\end{array}\right)_{(1,-2)^{T}}\binom{s}{t}=\left(\begin{array}{rr}-6 & 3 \\ 2 & -4\end{array}\right)\binom{s}{t}=\binom{-6 s+3 t}{2 s-4 t}$.
Next $\mathbf{g}(\mathbf{c})=(-6,9)^{T}$ so

$$
\begin{aligned}
d \mathbf{f}_{\mathbf{g}(\mathbf{c})}\left(d \mathbf{g}_{\mathbf{c}}(\mathbf{t})\right) & =\left(\begin{array}{cc}
2 x y & x^{2} \\
1 & -1
\end{array}\right)_{(-6,9)^{T}}\binom{-6 s+3 t}{2 s-4 t}=\left(\begin{array}{cc}
-108 & 36 \\
1 & -1
\end{array}\right)\binom{-6 s+3 t}{2 s-4 t} \\
& =\binom{720 s-468 t}{-8 s+7 t} .
\end{aligned}
$$

ii. For $\mathbf{x}=(x, y, z)^{T}, \mathbf{u}=(u, v)^{T}$ and $\mathbf{t}=(s, t)^{T} \in \mathbb{R}^{2}$ we have

$$
d \mathbf{f}_{\mathbf{x}}(\mathbf{u})=\left(\begin{array}{lll}
4 y & 4 x & 0 \\
3 z & 0 & 3 x
\end{array}\right)\binom{u}{v} .
$$

and
$d \mathbf{g}_{\mathbf{c}}(\mathbf{t})=\left(\begin{array}{cc}v^{2} & 2 u v-4 \\ 2 u & 0 \\ -4 / u^{2} v & -4 / u v^{2}\end{array}\right)_{(-2,3)^{T}} \mathbf{t}=\left(\begin{array}{rr}9 & -16 \\ -4 & 0 \\ -1 / 3 & 2 / 9\end{array}\right) \mathbf{t}=\left(\begin{array}{c}9 s-16 t \\ -4 s \\ -s / 3+2 t / 9\end{array}\right)$.

Next $\mathbf{g}\left((-2,3)^{T}\right)=(-30,4,-2 / 3)^{T}$ so

$$
\begin{aligned}
\mathbf{f}_{\mathbf{g}(\mathbf{c})}\left(d \mathbf{g}_{\mathbf{c}}(\mathbf{t})\right) & =\left(\begin{array}{ccc}
4 y & 4 x & 0 \\
3 z & 0 & 3 x
\end{array}\right)_{\mathbf{x}=(-30,4,-2 / 3)^{T}} d \mathbf{g}_{\mathbf{c}}(\mathbf{t}) \\
& =\left(\begin{array}{ccc}
16 & -120 & 0 \\
-2 & 0 & -90
\end{array}\right)\left(\begin{array}{c}
9 s-16 t \\
-4 s \\
-s / 3-2 t / 9
\end{array}\right) \\
& =\binom{624 s-256 t}{12 s+42 t} .
\end{aligned}
$$

iii. An alternative approach is to not mention \mathbf{t} until the end but, instead, look at the Jacobian matrices.

$$
J \mathbf{g}(\mathbf{c})=\left(\begin{array}{ccc}
4 & -3 & 1 \\
v^{2} & 2 u v & 0
\end{array}\right)_{\mathbf{u}=\mathbf{c}}=\left(\begin{array}{lll}
4 & -3 & 1 \\
4 & -4 & 0
\end{array}\right) .
$$

Next $\mathbf{g}(\mathbf{c})=(13,4)^{T}$. Then

$$
J \mathbf{f}(\mathbf{g}(\mathbf{c}))=\left(\begin{array}{cc}
3 & 4 \\
4 x y & 2 x^{2} \\
1 & -1
\end{array}\right)_{\mathbf{x}=(13,4)^{T}}=\left(\begin{array}{rr}
3 & 4 \\
208 & 338 \\
1 & -1
\end{array}\right) .
$$

Multiplying together,
$J \mathbf{f}(\mathbf{g}(\mathbf{c})) J \mathbf{g}(\mathbf{c})=\left(\begin{array}{cc}3 & 4 \\ 208 & 338 \\ 1 & -1\end{array}\right)\left(\begin{array}{ccc}4 & -3 & 1 \\ 4 & -4 & 0\end{array}\right)=\left(\begin{array}{ccc}28 & -25 & 3 \\ 2184 & -1976 & 208 \\ 0 & 1 & 1\end{array}\right)$.
Now introduce $\mathbf{t} \in \mathbb{R}^{3}$ so $\mathbf{t}=(r, s, t)^{T}$ say. Then
$d(\mathbf{f} \circ \mathbf{g})_{\mathbf{c}}(\mathbf{t})=\left(\begin{array}{ccc}28 & -25 & 3 \\ 2184 & -1976 & 208 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{l}r \\ s \\ t\end{array}\right)=\left(\begin{array}{c}28 r-25 s+3 t \\ 2184 r-1976 s+208 t \\ s+t\end{array}\right)$
14. Revisit Question 17 iii on Sheet 3. Define the functions $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $(x, y)^{T} \mapsto(x+y, x-y, x y)^{T}$ and $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $(x, y, z)^{T} \mapsto x y^{2} z$.

Calculate, using the Chain Rule, the directional derivative of $h \circ \mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at $\mathbf{a}=(2,-1)^{T}$ in the direction $\mathbf{v}=(1,-2)^{T} / \sqrt{5}$.
Solution Since $h \circ \mathbf{f}$ is scalar-valued we normally write $d_{\mathbf{v}}(h \circ \mathbf{f})(\mathbf{a})=$ $\nabla(h \circ \mathbf{f})(\mathbf{a}) \bullet \mathbf{v}$. But $\nabla(h \circ \mathbf{f})(\mathbf{a})=J(h \circ \mathbf{f})(\mathbf{a})^{T}$ so $d_{\mathbf{v}}(h \circ \mathbf{f})(\mathbf{a})=J(h \circ \mathbf{f})(\mathbf{a}) \mathbf{v}$. The Chain Rule states that

$$
J(h \circ \mathbf{f})(\mathbf{a})=\operatorname{Jh}(\mathbf{f}(\mathbf{a})) J \mathbf{f}(\mathbf{a})=\operatorname{Jh}(\mathbf{b}) J \mathbf{f}(\mathbf{a})
$$

with $\mathbf{b}=\mathbf{f}(\mathbf{a})$. In this case $\mathbf{b}=(1,3,-2)^{T}$. The Jacobian matrices are

$$
J f(\mathbf{a})=\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
y & x
\end{array}\right)_{\mathbf{x}=\mathbf{a}}=\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
-1 & 2
\end{array}\right)
$$

and

$$
\operatorname{Jh}(\mathbf{b})=\left(\begin{array}{lll}
y^{2} z & 2 x y z & x y^{2}
\end{array}\right)_{\mathbf{x}=\mathbf{b}}=\left(\begin{array}{ccc}
-18 & -12 & 9
\end{array}\right) .
$$

Then

$$
J(h \circ \mathbf{f})(\mathbf{a})=\left(\begin{array}{lll}
-18 & -12 & 9
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{ll}
-39 & 12
\end{array}\right) .
$$

Finally,

$$
\begin{aligned}
d_{\mathbf{v}}(h \circ \mathbf{f})(\mathbf{a}) & =\nabla(h \circ \mathbf{f})(\mathbf{a}) \bullet \mathbf{v} \\
& =\frac{1}{\sqrt{5}}\left(\begin{array}{ll}
-39 & 12
\end{array}\right)\binom{1}{-2}=-\frac{63}{\sqrt{5}}
\end{aligned}
$$

This should agree with your answer to Question 17 on Sheet 3. Would you agree that the calculations are simpler using the Chain Rule?
15. Assume $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is Fréchet differentiable at $\mathbf{q}=(2,3)^{T}$ with

$$
J \mathbf{F}(\mathbf{q})=\left(\begin{array}{rr}
-1 & 2 \\
2 & -3 \\
0 & 4
\end{array}\right)
$$

Assume also that $\mathbf{F}(\mathbf{q})=\left(\begin{array}{lll}2 & -1 & 4\end{array}\right)^{T}$.
Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}: f(\mathbf{x})=|\mathbf{F}(x)|$. Prove that f is Fréchet differentiable at \mathbf{q} and find $d f_{\mathbf{q}}(\mathbf{t})$ for $\mathbf{t} \in \mathbb{R}^{2}$.

Solution The function f is the composition of \mathbf{F} and the distance function $d(\mathbf{y}):=|\mathbf{y}|$ for $\mathbf{y} \in \mathbb{R}^{3}$. By assumption \mathbf{F} is Fréchet differentiable at \mathbf{q}, and $|\ldots|$ is Fréchet differentiable everywhere, in particular at $\mathbf{F}(\mathbf{q})$. Thus by the Chain rule f is Fréchet differentiable at \mathbf{q}.

It is simpler to first calculate the Jacobian matrix

$$
J f(\mathbf{q})=J(d \circ \mathbf{F})(\mathbf{q})=J d(\mathbf{F}(\mathbf{q})) J \mathbf{F}(\mathbf{q}) .
$$

For $\mathbf{y}=(x, y, z)^{T} \in \mathbb{R}^{3}, \mathbf{y} \neq \mathbf{0}$, we have $d(\mathbf{y})=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ so

$$
J d(\mathbf{y})=\frac{1}{d(\mathbf{y})}\left(\begin{array}{lll}
x & y & z
\end{array}\right)=\frac{1}{d(\mathbf{y})} \mathbf{y}^{T} .
$$

Thus, by the assumptions in the question,

$$
\begin{aligned}
J f(\mathbf{q}) & =J d(\mathbf{F}(\mathbf{q})) J \mathbf{F}(\mathbf{q})=\frac{1}{d(\mathbf{F}(\mathbf{q}))} \mathbf{F}(\mathbf{q})^{T}\left(\begin{array}{rr}
-1 & 2 \\
2 & -3 \\
0 & 4
\end{array}\right) \\
& =\frac{1}{\sqrt{21}}\left(\begin{array}{lll}
2 & -1 & 4
\end{array}\right)\left(\begin{array}{rr}
-1 & 2 \\
2 & -3 \\
0 & 4
\end{array}\right) \\
& =\frac{1}{\sqrt{21}}\left(\begin{array}{ll}
0 & 23
\end{array}\right) .
\end{aligned}
$$

Finally, for $\mathbf{t}=(s, t)^{T} \in \mathbb{R}^{2}$ we have

$$
d f_{\mathbf{q}}(\mathbf{t})=23 t / \sqrt{21} .
$$

16. A heat-seeking insect always moves in the direction of the greatest increase in temperature. Describe the path of a heat-seeking insect placed at $(1,1)^{T}$ on a metal plate heated so that the temperature at $\mathbf{x}=(x, y)^{T}$ is given by

$$
T(\mathbf{x})=100-40 x y e^{-r(\mathbf{x})},
$$

where $r(\mathbf{x})=\left(x^{2}+y^{2}\right) / 10$.
What if the insect starts at $(3,2)^{T}$? Or the origin $\mathbf{0}$?
Solution The gradient vector at $\mathbf{x} \in \mathbb{R}^{2}$ is

$$
\nabla T(\mathbf{x})=\binom{-40 y e^{-r(\mathbf{x})}+8 x^{2} y e^{-r(\mathbf{x})}}{-40 x e^{-r(\mathbf{x})}+8 x y^{2} e^{-r(\mathbf{x})}}=e^{-r(\mathbf{x})} 8\binom{-5 y+x^{2} y}{-5 x+x y^{2}}
$$

At time t the insect is at point $(x(t), y(t))^{T}$. It will be moving in the direction $\left(x^{\prime}(t), y^{\prime}(t)\right)^{T}$. Being heat-seeking it will move in the direction of the greatest increase in temperature, given by $\nabla T(\mathbf{x})$. Thus $\left(x^{\prime}(t), y^{\prime}(t)\right)^{T}=$ $c \nabla T(\mathbf{x})$ for some $c>0$. Therefore the ratio of coordinates are equal, i.e.

$$
\frac{x^{\prime}(t)}{y^{\prime}(t)}=\frac{-5 y+x^{2} y}{-5 x+x y^{2}}=\frac{y\left(x^{2}-5\right)}{x\left(y^{2}-5\right)}
$$

as long as $y^{2} \neq 5$. Rearrange as

$$
\begin{equation*}
\frac{x x^{\prime}(t)}{5-x^{2}}=\frac{y y^{\prime}(t)}{5-y^{2}} . \tag{4}
\end{equation*}
$$

I have written it like this for at time 0 we are told $x=1$ and so $5-x^{2}>0$. The same also hold for $5-y^{2}$. Integrate to get

$$
-\frac{1}{2} \ln \left(5-x^{2}\right)=-\frac{1}{2} \ln \left(5-y^{2}\right)+C,
$$

for a constant C, or

$$
5-x^{2}=A\left(5-y^{2}\right),
$$

for $y^{2} \neq 5$. where $A=e^{2 C}$. To find A plug in the starting point $(1,1)^{T}$ to get $4=4 A$, so $A=1$. Thus the path is $x^{2}=y^{2}$. or $x= \pm y$. The point $(1,1)^{T}$ does not lie on the line $x=-y$ so the answer is $x=y$. To find the direction of the line along which the insect travels look again at the gradient vector which, at $\mathbf{a}=(1,1)^{T}$ is, $\nabla T(\mathbf{a})=e^{-r(\mathbf{a})} 8(-4,-4)^{T}$. This points towards the origin. Therefore, starting at $(1,1)^{T}$, the insect moves directly to the origin.

If the starting point is $(3,2)^{T}$ then you might have a reservation in using (4) for $5-3^{2}<0$ and so $\ln \left(5-x^{2}\right)$ may well not be defined. You could, instead, write (4) as

$$
-\frac{x x^{\prime}(t)}{x^{2}-5}=\frac{y y^{\prime}(t)}{5-y^{2}} .
$$

Integrate to get

$$
-\frac{1}{2} \ln \left(x^{2}-5\right)=-\frac{1}{2} \ln \left(5-y^{2}\right)+C,
$$

or

$$
x^{2}-5=A\left(5-y^{2}\right) .
$$

Plugging in the starting point $(3,2)^{T}$ we find $A=4$ in which case

$$
x^{2}+4 y^{2}=25
$$

So at $(3,2)^{T}$ the insect starts on the path of this ellipse in the clockwise direction. (For the direction look at the signs of the components of $\nabla T\left((3,2)^{T}\right)$).

Be careful, this does not mean the insect traverses this ellipse without end - how could it do so gaining temperature all the time? This ellipse has been derived on the basis that $x^{2}>5$ and $y^{2}<5$. If either of these fails we have to re-examine the problem. One such point on the ellipse is $\mathbf{a}=(\sqrt{5},-\sqrt{5})^{T}$. But $\nabla T(\mathbf{a})=\mathbf{0}$ so, at this point, the insect will not know which way to go and presumably stop.

At the origin the gradient vector $\nabla T(\mathbf{0})$ is $\mathbf{0}$ so again the insect will not know which way to go and will remain in place.

